Anatomy books

Friday, March 14, 2025

Osteology : Coccyx

 Coccyx (Tailbone) The coccyx is the small, triangular bone at base of the vertebral column, formed by the fusion of 3 to 5 coccygeal vertebrae. It acts as an attachment site for muscles, ligaments, and tendons, playing a role in pelvic support and posture.

1. General Features of the Coccyx

Feature

Description

Shape

Small, triangular, and  curved bone

Location

Lower end of the vertebral column, below the sacrum vertebra

Formation

It is formed by the fusion of 3 to 5 coccygeal vertebrae (typically 4)

Curvature

Slightly curves anteriorly (more in males, less in females)

Base

The superior, broader part that articulates with the sacrum vertebra

Apex

The inferior, pointed end that does not articulated with any bone

Cornua (Coccygeal Horns)

Two small projections at the base, connecting with the sacral cornua

Transverse Processes

Small lateral extensions present in the first coccygeal vertebra

Articulation

It articulates with the sacrum at the sacrococcygeal joint

Function

It supports body weight during sitting, attachment site for pelvic muscles and ligaments

 

2. Differences Between Coccygeal Vertebrae

  • Co1 (First Coccygeal Vertebra):
    • Largest and most developed.
    • Has transverse processes and cornua (horn-like projections).
    • Articulates with the sacrum.
  • Co2 to Co4 (or Co5):
    • Become progressively smaller and simpler.
    • Lack transverse processes.
    • Eventually fuse into a single bony mass.

3. Ligaments and Muscles Attached to the Coccyx

Ligaments:

  • Anterior sacrococcygeal ligament – Connects sacrum to coccyx (like the anterior longitudinal ligament of the spine).
  • Posterior sacrococcygeal ligament – Similar to the posterior longitudinal ligament.
  • Lateral sacrococcygeal ligaments – Stabilize the sacrococcygeal joint.
  • Intercoccygeal ligaments – Connect coccygeal vertebrae before they fuse.

Muscles:

  • Levator ani (pubococcygeus & iliococcygeus) – it supports pelvic organs.
  • Coccygeus muscle – it helps with defecation and pelvic floor stability.
  • Gluteus maximus – Partly attaches to the coccyx for hip movement.
  • Sphincter ani externus – Controls anal opening.

4. Clinical Importance

 Fracture/Dislocation is common in falls or during childbirth, causing coccydynia (tailbone pain).
 Coccygodynia – Chronic pain due to injury, prolonged sitting, or muscle strain.
 Childbirth Adaptation – The female coccyx is more flexible and moves backward during delivery.
 Vestigial Structure – Considered a remnant of a tail from evolutionary history.

Thursday, March 13, 2025

The input and output pathways of cerebellum

 

2. Input Pathways

    • Mossy FibersOrigin: Brainstem (pontine nuclei), spinal cord, vestibular system.  they carry general sensory/motor information, synapse with granule cells.
    • Climbing FibersOriginate from  Inferior olivary nucleus. it responsible for motor learning feedback, synapse with Purkinje cells.

3. Output Pathways

  • Deep Cerebellar Nuclei (DCN):
    • Structures: Dentate, interposed, fastigial nuclei. (collection of nerve cell body within the white matter of cerebellum) 
    • Function: they relay motor/posture/balance signals to motor pathways.
  • Motor Pathways:
    • Thalamus: Sends motor informatio in to motor cortex.
    • Brainstem: it controls posture, balance, and limb movements.

4. Cerebellar Circuits

  • Corticopontocerebellar Pathway: it sends motor commands from the motor cortex to cerebellum for movement coordination.
  • Spinocerebellar Pathways: it provide proprioceptive feedback to adjust posture and movement.
  • Olivocerebellar Pathway: it sends error-correcting feedback for motor learning.

Neuroanatomical Basis of Dysdiadochokinesia

 

Neuroanatomical Basis of Dysdiadochokinesia

Definition : Dysdiadochokinesia refers to the inability to perform rapid and  alternating movements, such pronation and supination of arm quickly. It is often related  with cerebellar dysfunction. The neuroanatomical basis of dysdiadochokinesia involves the following key structures:

1. Cerebellum : it coordinates and control timing and precision of movements, including rapid alternating movements. the different  areas of the cerebellum responsible for motor control include the spinocerebellum (for coordination of trunk and limb movements) and cerebrocerebellum (for fine-tuning voluntary movements and motor learning). Damage to the cerebellum, particularly the lateral hemispheres (cerebrocerebellum) or vermis (spinocerebellum), results in impaired motor coordination, leading to dysdiadochokinesia and loss of balance

2. Deep Cerebellar Nuclei (DCN) : The cerebellar cortex communicates with  deep cerebellar nuclei, including the dentate nucleus (involved in fine motor control), interposed nuclei, and fastigial nucleus which are regulating motor timing and precision. If the deep cerebellar nuclei functions are impaired  due to lesions in the cerebellum, the timing and coordination of rapid alternating movements are disrupted, causing dysdiadochokinesia.

give an account of the functional organisation of the cerebellum

Functional organisation of  cerebellum

The cerebellum coordinates voluntary movements, maintains balance, and enables motor learning. 

It has functional regions, circuits, and pathways that contribute to these functions.


1. Functional Regions of the Cerebellum

  • Vestibulocerebellum (Flocculonodular Lobe):
    • Function: Balance, posture control, &  eye movement coordination.
    • Input: Vestibular apparatus and brainstem.
    • Output: it ends signals to vestibular nuclei.
  • Spinocerebellum (Vermis and Intermediate Zone):
    • Function: it maintain muscle tone regulation, trunk/limb movement coordination, and postural adjustments.
    • Input: Spinal cord (proprioceptive feedback).
    • Output: Fastigial and interposed nuclei to motor cortex and brainstem.
  • Cerebrocerebellum (Lateral Hemispheres):
    • Function: Planning, fine-tuning voluntary movements, motor learning, &  cognitive functions.
    • Input: Cerebral cortex via pontine nuclei.
    • Output: Dentate nucleus to thalamus and motor cortex.
  • 2. Input Pathways

      • Mossy FibersOrigin: Brainstem (pontine nuclei), spinal cord, vestibular system.  Carry general sensory/motor information, synapse with granule cells.
      • Climbing FibersOrigin: Inferior olivary nucleus. Error signals/motor learning feedback, synapse with Purkinje cells.

    3. Output Pathways

    • Deep Cerebellar Nuclei (DCN):
      • Structures: Dentate, interposed, fastigial nuclei.
      • Function: Relay motor/posture/balance signals to motor pathways.
    • Motor Pathways:
      • Thalamus: Sends motor info to motor cortex.
      • Brainstem: Controls posture, balance, and limb movements.

    4. Cerebellar Circuits

    • Corticopontocerebellar Pathway:
      • Sends motor commands from the motor cortex to cerebellum for movement coordination.
    • Spinocerebellar Pathways: it provide proprioceptive feedback to adjust posture and movement.
    • Olivocerebellar Pathway:
      • Sends error-correcting feedback for motor learning.

Cellular Organization of the Cerebellar Cortex and Functional Organization

 

Cellular Organization of the Cerebellar Cortex and Functional Organization

The cerebellar cortex is a highly organized structure comprising three distinct layers, each with specific types of neurons and functions. These layers work together to ensure proper coordination of movement, balance, and motor learning.


Layers of the Cerebellar Cortex

  • A. Molecular Layer (Outer Layer) :  Contains the dendrites of Purkinje cells and parallel fibers of granule cells,  forming synapses with Purkinje cell dendrites.
  • Cell types and functions of cells of molecular layer :
    • Stellate Cells: Located superficially; inhibit Purkinje cells through GABAergic synapses.
    • Basket Cells: Found deeper in the molecular layer; form inhibitory synapses with Purkinje cells.

B. Purkinje Layer (Middle Layer) contain Purkinje Cells: Large, flask-shaped neurons arranged in a single layer which receive excitatory input from parallel fibers (granule cells) and climbing fibers (from the inferior olivary nucleus).

Output of this cell is entirely inhibitory (GABAergic) and projects to the deep cerebellar nuclei.

DCN receive excitatory input from mossy fibers and climbing fibers (via collateral branches).

Purkinje cells provide precise inhibitory control over DCN, adjusting the excitatory output based on sensory feedback and motor planning.

 


    • C. Granular Layer (Inner Layer) contains glomeruli (synaptic complexes), where mossy fibers synapse with granule cell dendrites and Golgi cell axons.

 

  • Cell Types of granular layer and functions:
    • Granule Cells: Small, densely packed neurons; their axons ascend to the molecular layer to form parallel fibers.
    • Golgi Cells: Inhibitory interneurons that regulate granule cell activity.

 

2. Functional Organization

Input Pathways:

  1. Mossy Fibers:
    • Originate from spinal cord, brainstem, and cerebrum.
    • Synapse with granule cells in the granular layer.
    • Transmit general sensory and motor information.
  2. Climbing Fibers:
    • Originate from the inferior olivary nucleus.
    • Synapse directly on Purkinje cells (one-to-one relationship).
    • Carry error signals for motor learning.

Output Pathway:

  • Purkinje Cells:
    • The only output of the cerebellar cortex.
    • Inhibit deep cerebellar nuclei (dentate, interposed, and fastigial), which send excitatory outputs to motor pathways for movement coordination.

Tuesday, March 11, 2025

টেক্সট ফরম্যাটিং স্টাইলের পার্থক্য: হার্ভার্ড বনাম ভ্যাঙ্কুভার Harvard vs Vancouver

 

টেক্সট ফরম্যাটিং স্টাইলের পার্থক্য: হার্ভার্ড বনাম ভ্যাঙ্কুভার

হার্ভার্ড এবং ভ্যাঙ্কুভার রেফারেন্সিং স্টাইলের মধ্যে শুধু citation format নয়, text formatting-এরও পার্থক্য রয়েছে। নিচে মূল পার্থক্যগুলো তুলে ধরা হলো:


১. In-text Citation (টেক্সটের মধ্যে উদ্ধৃতি দেওয়া)

  • Harvard: Author-date format ব্যবহার করা হয়, যেখানে লেখকের নাম ও প্রকাশনার সাল উল্লেখ থাকে। উদাহরণ: (Smith, 2020) বা Smith (2020)
  • Vancouver: Numbering system ব্যবহার করা হয়, যেখানে উত্সগুলো সংখ্যা আকারে উল্লেখ থাকে। উদাহরণ: (1) বা ¹

২. Reference List Formatting (তথ্যসূত্রের তালিকা ফরম্যাটিং)

Harvard:

Author's last name অনুযায়ী alphabetically সাজানো হয়।
Hanging indent ব্যবহৃত হয় (প্রথম লাইন বাম পাশে থাকে, দ্বিতীয় ও পরবর্তী লাইন কিছুটা ভেতরে থাকে)।
Author names লেখা হয়: Last name, Initial(s).
উদাহরণ:

Smith, J. (2020). Anatomy of the Heart. Oxford: Oxford University Press.

Vancouver:

তালিকাটি টেক্সটে যে ক্রমে সূত্র ব্যবহৃত হয়েছে, সেই অনুযায়ী (numerically) সাজানো হয়।
Hanging indent নেই; প্রতিটি রেফারেন্স বাম পাশ থেকে শুরু হয়।
Author names লেখা হয়: Initial(s). Last name (কমা ছাড়া)।
উদাহরণ:

J Smith. Anatomy of the Heart. Oxford: Oxford University Press; 2020.


৩. Punctuation & Italics (যথাযথ বিরামচিহ্ন এবং Italics ব্যবহার)

  • Harvard:
    Book এবং journal titles Italicized হয়।
    Author name, year এবং title-এর মধ্যে কমা ব্যবহৃত হয়।
  • Vancouver:
    Italicized করা হয় না, এবং কমা ও অন্যান্য বিরামচিহ্ন কম থাকে।
    Journal titles সাধারণত Index Medicus অনুযায়ী সংক্ষিপ্ত করা হয়।

৪. Page Number Format (পৃষ্ঠা নম্বর ফরম্যাটিং)

  • Harvard:
    একটি পৃষ্ঠার জন্য "p." এবং একাধিক পৃষ্ঠার জন্য "pp." ব্যবহার করা হয়।
    উদাহরণ: (Smith, 2020, p. 15)
  • Vancouver:
    "p." বা "pp." ব্যবহৃত হয় না, শুধু কোলন (:) ব্যবহার করা হয়।
    উদাহরণ: 1:15-20.

৫. Journal Article Formatting (জার্নাল নিবন্ধের ফরম্যাটিং)

Harvard:

Author(s). (Year). Title of article. Journal Name, Volume(Issue), Page range.
উদাহরণ:

Smith, J. (2020). Structure of the brain. Neuroscience Journal, 12(3), pp. 45-50.

Vancouver:

Author(s). Title of article. Abbreviated Journal Name. Year; Volume(Issue): Page range.
উদাহরণ:

Smith J. Structure of the brain. Neurosci J. 2020;12(3):45-50.


Key Takeaways (মূল পার্থক্য)

Feature (বৈশিষ্ট্য)Harvard StyleVancouver Style
In-text citation(Smith, 2020)(1) বা ¹
Reference orderAlphabetically (Author অনুযায়ী)Numerically (Text অনুযায়ী)
Hanging indentYesNo
Author formatLast name, Initial(s)Initial(s) Last name
Journal namesFull name (italicized)Abbreviated (non-italic)
Book titlesItalicizedPlain text

উপসংহার

Harvard style সাধারণত humanities and social sciences-এ বেশি ব্যবহৃত হয়।
Vancouver style মূলত biomedical এবং health sciences-এ বেশি প্রচলিত।


Harvard এবং Vancouver স্টাইলের পার্থক্য : in text citation and reference list পরিচালনার ক্ষেত্রে

 Harvard এবং Vancouver স্টাইলের পার্থক্য

Harvard এবং Vancouver স্টাইল মূলত in-text citation এবং reference list পরিচালনার ক্ষেত্রে আলাদা হয়। Harvard author-date সিস্টেম ব্যবহার করে, যেখানে Vancouver numerical সিস্টেম ব্যবহার করে।

In-text Citation:

  • Harvard: লেখকের last name এবং publication year ব্র্যাকেটে দেওয়া হয়, যেমন: (Pears and Shields, 2019)।
  • Vancouver: সংখ্যাসূচক পদ্ধতি ব্যবহার করে, যেমন (1) অথবা ¹। সূত্রগুলো উল্লিখিত হওয়ার ক্রমানুসারে নম্বর দেওয়া হয়।

Reference List:

  • Harvard: Author's last name অনুযায়ী alphabetically সাজানো হয়।
  • Vancouver: উল্লিখিত সূত্রের ক্রমানুসারে numerically সাজানো হয়।

অন্যান্য বিষয়:

  • Vancouver style সাধারণত biomedical এবং health sciences-এ বেশি ব্যবহৃত হয়।
  • উভয় স্টাইলেরই বিভিন্ন variation রয়েছে, তাই নির্দিষ্ট গাইডলাইন অনুসরণ করা গুরুত্বপূর্ণ।